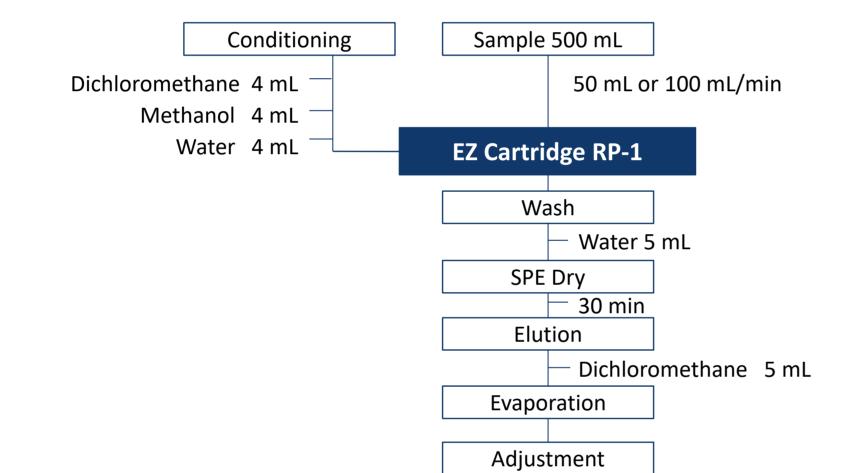

GENERAL SCIENCES

Rapid Sample Preparation and Analysis of 107 Pesticides in Water with the Solid Phase Extraction Disk Cartridge and Gas Chromatography Mass Spectrometer

Reika Takahara, Takumi Kunieda, Kazuyuki Ishii, Manabu Takayanagi, Hiroshi Hayashida, GL Sciences Inc., Tokyo, Japan

Introduction


Gas chromatography mass spectrometer (GC-MS) and liquid chromatography mass spectrometer (LC-MS) are generally used for pesticide analysis in water, while solid phase extraction (SPE), which is easier to automate and uses less solvent, is preferred as a sample concentration method. SPE may concentrate analytes hundreds of times their concentration in the sample, allowing for the detection of analytes with very low concentrations. Conversely, SPE operation is complex, requiring conditioning of the SPE cartridge, sample application, washing, dehydration, elution, and distillation of the evaporation solvent as needed, and taking several hours for each preparation. If the number of samples is enormous, it may take up to an hour to apply the SPE cartridge. In this study, we report that the time for SPE in the analysis of 107 pesticides in water was greatly reduced using the new shape of SPE cartridge "EZ cartridge RP-1". The EZ cartridge RP-1 has an SPE membrane fixed in a polypropylene housing. This membrane is composed of reversed-phase mode divinylbenzene - methacrylate copolymer particles and polytetrafluoroethylene (PTFE) fiber and is molded to a diameter of 25 mm and a thickness of 0.5 mm. Because of its large cross-sectional area, water sample

passage at the same linear speed can theoretically be increased by approximately five times compared to a typical SPE cartridge. Due to the diameter of the solid phase particle being only 10 um, it is possible to strongly retain an analyte, preventing the analyte from breaking through.

Methods

Solutions and mixtures for sample preparation were extracted and analyzed as shown in Table 3. The standard sample was prepared by diluting a pesticide standard mixture (Hayashi Pure Chemical Ind., Ltd.) and adding it to the sample water. The SPE cartridge, EZ Cartridge RP-1 (GL Sciences, Inc.), is filled with a reverse mode SPE membrane made of methacrylate divinylbenzene copolymer. The 500 mL sample was concentrated using the procedure shown in Fig.1. The flow rates to the SPE cartridge were 50 mL/min and 100 mL/min, respectively, and the other procedures were the same. The analytes were eluted with 5 mL dichloromethane, then nitrogen gas was sprayed while the eluate was concentrated to 0.5 mL before being adjusted to 1 mL with dichloromethane. The entire process, from conditioning the SPE cartridge to evaporating the elution solvent, is performed automatically by the Aqua Trace ASPE899 (GL Sciences, Inc.). The GCMS-QP2020 NX was used to examine the material (Shimadzu). The internal standard was a mixture of Anthracene-d10, Chrysene-d12, and 9-Bromoanthrancene, with 9-Bromoanthrancene for correction. The InertCap 5MS/Sil capillary column was employed, which is a low-polar column having a liquid phase of 5% diphenyl (equiv.) - 95% dimethyl silphenylene siloxane.

EZ Cartridge RP-1 Solid Phase Extraction Disk Cartridge

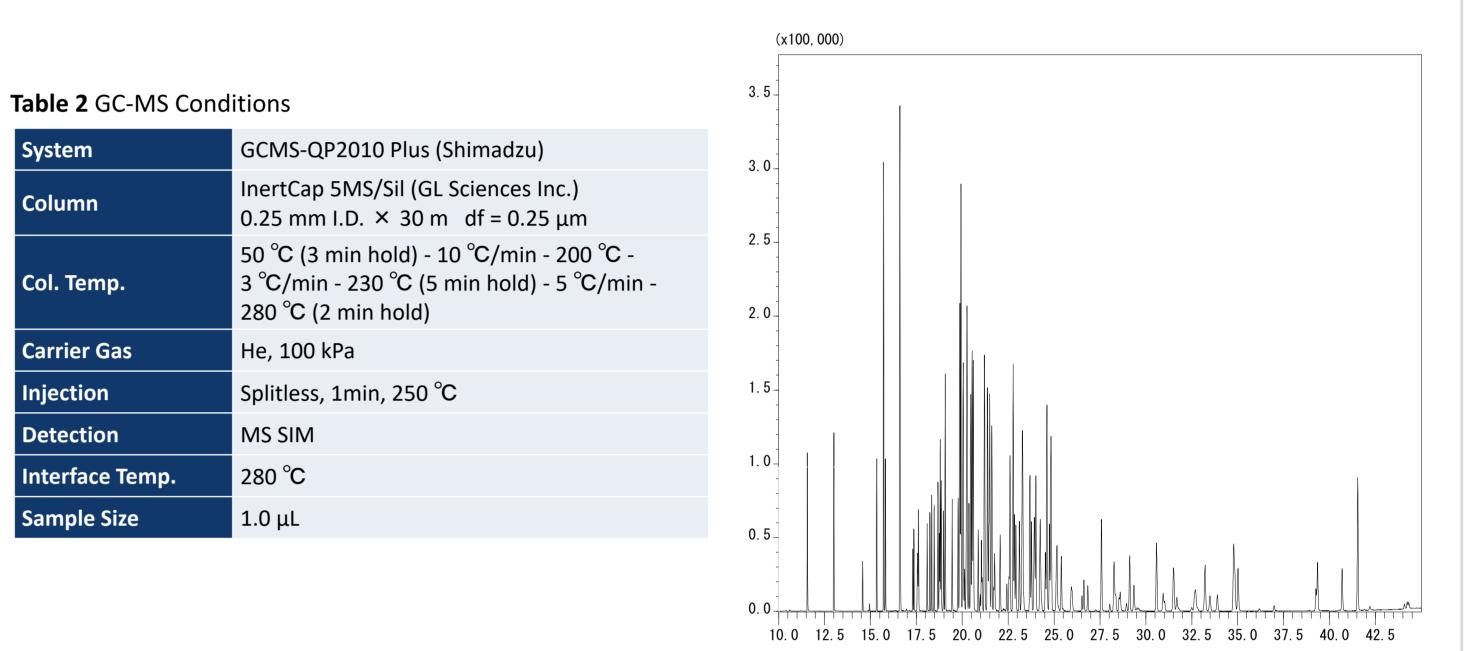
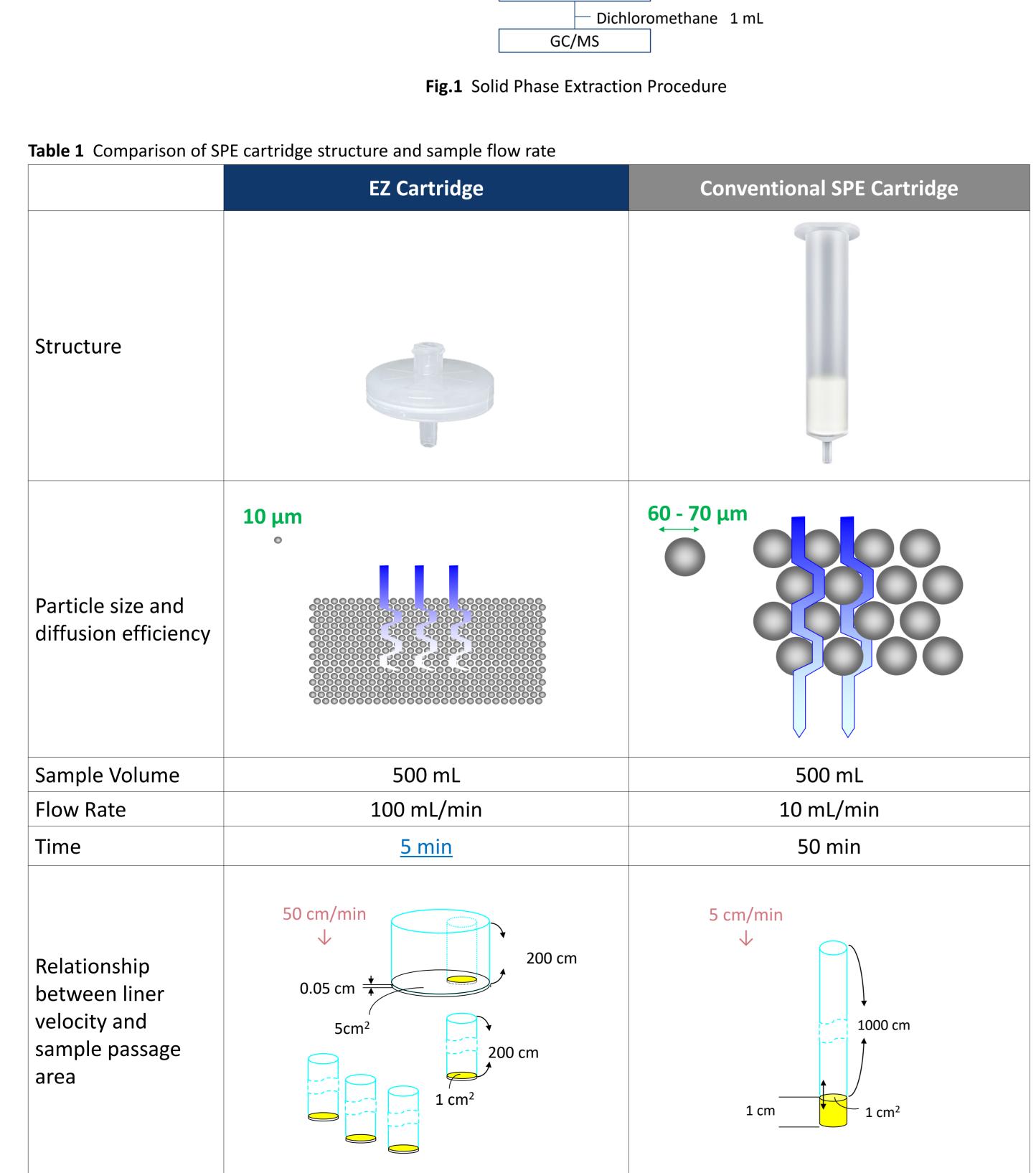



Fig.2 Total Ion Current Chromatogram

Table 3 Repeatability Linearity, and Recovery

NO.	Flow Rate Compounds	100 mL/min		50 mL/min			Flow Rate	100 mL/min		50 mL/min	
		Recovery Rate (%)	CV (%, n = 3)	Recovery Rate (%)	CV (%, n = 3)	NO.	Compounds	Recovery Rate (%)	CV (%, n = 3)	Recovery Rate (%)	CV (%, n = 3)
1	Dichlorvos	75.8	9.6	76.3	2.8	55	Phenthoate	77.4	6.7	73.6	5.2
2	Etridiazole	65.9	11	70.4	4.3	56	Captan	78.7	3.4	78.4	2.2
3	Chloroneb	81.1	10.5	81.8	1.9	57	Procymidone	85.4	4.9	81.4	2.3
4	Isoprocarb	81.1	8.4	78.6	2.6	58	Dimepiperate	77.6	5.6	76.4	4.5
5	Fenobucarb	82	7.8	79.1	2.6	59	Butamifos Oxon	75.2	8.5	74.3	7.2
6	Propoxur (PHC)	77.9	4.2	80.3	3.2	60	Methidathion	84.7	4.8	77.1	4.8
7	Pecycuron	86.1	8.1	78.3	5.5	61	Propaphos	75.5	6.8	73.1	5.7
8	Simazine	83.5	4.9	67.6	4.6	62	Tetrachlorvinphos (CVMP)	78.2	5	79.1	5.8
9	Atrazine	83.4	5	77.8	4.4	63	Paclobutrazol	81.6	6.4	76.8	5.3
10	Diazinon Oxon	82.3	5.9	76.2	6.6	64	Butachlor	75	6.5	75	4.9
11	Cyanophos (CYAP)	74.7	6.4	74.7	4.1	65	alpha-Endosulfan	73.1	5.5	77.7	2.4
12	Propyzamide	85.3	5.6	76	4.9	I.S 2	9-Bromoanthracene	-	-	-	-
13	Diazinon	77.3	7.8	73.7	4.3	66	Butamifos	78.4	5.3	74.9	6.3
14	Pyroquilon	79.1	6.8	78.8	2.8	67	Napropamide	87.3	6.3	79.1	4.6
15	Chlorothalonil (TPN)	75.2	4.3	71.7	3.9	68	Flutolanil	88.9	5.4	80.1	5.6
I.S 1	Anthracene-d10	-	-	-	-	69	(E)-Metominostrobin	83.7	6.2	79.9	5.7
16	Ethylthiomethon	74.9	8.1	74.9	3.6	70	Pretilachlor	84.6	6	77.4	4.4
17	Iprobenfos	78.8	6	76.4	5	71	Isoprothiolane	86.7	5.1	81.5	2.8
18	Tolclofos-methyl Oxon	83	5.2	78.4	4.5	72	Isoxathion Oxon	85.5	5.6	67.4	1.9
19	Benfuresate	79	6.5	77.6	3.7	73	Uniconazole P	80.3	7.3	74.1	5.2
20	MEP Oxon	81	6	80.5	4.9	74	Thifluzamide	80.5	5.9	75.8	5.7
21	Terbucarb	83.3	5.8	78	5.4	75	MPP Oxon Sulfoxide	81.3	5.3	91.6	4.2
22	Propanil (DCPA)	84.6	5.3	82.4	4.1	76	MPP Oxon Sulfone	80.9	12.8	81.9	6.1
23	Bromobutide	80.6	4.8	75.5	6.6	77	Buprofezin	77.4	6.1	77.4	3.2
24	Metribuzin	78.6	4.3	77.4	5.3	78	Cyproconazole	78.1	8.4	73.4	6
24	Malaoxon	88.4	11.8	91.9	7.3	79	(Z)-Pyriminobac-methyl	80.5	7.1	74.8	4.8
						80	MPP sulfoxide	78.6	5.1	74.8	3.3
26	Simeconazole	78.8	5.1	76.2	5.9	80	beta-Endosulfan	73.7	5.4	78.9	2.8
27	Alachlor	82.5	5.6	77.7	4.2				5.7		
28	Tolclofos-methyl	75.9	6.3	75.3	3.6	82	MPP sulfone	78.7		78.4	5.4
29	Simetryne	77.9	4.5	69.3	6.3	83	Mepronil	88.5	6.5	79.3	4.4
30	Metalaxyl	84.2	6.6	80.2	4.6	84	Chlornitrofen (CNP)	68.2	8.9	76.6	6.4
31	Ametryn	79.5	5.7	75.7	5.1	85	Edifenphos	87.7	4.8	79.2	5.8
32	Cinmethylin	76.6	5.9	78.4	3.5	86	Propiconazole1	85.1	6.1	74.9	7.3
33	MPP Oxon	79.8	4.4	79.9	6.1	87	Endsulfate	69.8	3.4	81.8	8.6
34	Fenitrothion	81.4	5.9	77.2	5.5	88	(E)-Pyriminobac-methyl	80.2	6.1	71.2	6.8
35	Bromacil	79.6	4.7	78.8	7	89	Propiconazole2	82.8	7.1	72.6	6.4
36	(E)-Dimethylvinphos	82.2	5.2	82.7	7.3	90	EPN Oxon	84.2	9.8	81.1	7.3
37	Esprocarb	79.5	6.9	78.5	3.2	91	Thenylchlor	87.3	5.2	78.1	6.6
38	Malathion	85.9	4.8	79.6	5.3	92	Tebuconazole	80	7.2	76.7	4.6
39	Chlorpyrifos Oxon	86.9	7.2	81	6.7	93	Pyridaphenthion	79	8	69.5	8.2
40	Quinoclamine (ACN)	74.2	4.4	76.7	4.5	94	Acetamiprid	70.4	6	70.6	7.8
41	Metolachlor	78.2	5.8	75.4	4.9	95	Iprodion	79.3	5.2	74.5	6.8
42	Thiobencarb	81.8	5.9	79.3	1.8	I.S 3	Chrysene-d12	-	-	-	-
43	(Z)-Dimethylvinphos	79.6	3.9	79.2	3.5	96	EPN	73	9.4	77.9	6.9
44	Cyanazine	78.8	3.4	79.4	3.9	97	Piperophos	71.7	10.1	66	7.8
45	Fenthion	79.9	5.8	77.5	3.3	98	Indanofan	72.3	11.5	29.6	6.4
46	Chlorthal-dimethyl (TCTP)	73.2	4.6	76.9	2	99	Furametpyr	79	6.7	73	7.2
47	Isofenphos Oxon	83.2	8.8	76.3	7.7	100	Iprodion metabolite	71.5	7.2	74.3	5.2
48	Tetraconazole	76.9	5	73.6	5.9	101	Mefenacet	79.2	6.4	74.7	6.9
49	Fthalide	81.5	4	79.1	2.7	102	CNP-amino	87.1	5.4	78.4	4.4
50	Fosthiazate	83.2	6.3	89.9	3.7	103	Etobenzanid	84.4	8	78.1	5.7
51	Cyprodinil	75.2	5.2	74.3	3.8	104	Cafenstrole	91.7	6	83.2	4.8
52	Dimethametryn	80	6.2	72.5	5.8	105	Boscalid	87.2	6.2	77.5	4.5
53	Isofenphos	79.6	5.1	76.4	4.3	106	Thiacloprid	80.7	4.7	81.8	6.2
54	Methyldymron	80.2	4.5	77.9	3.5	100	Pyrazoxyfen	81.5	6.4	79.9	4.2

Results

Pesticides in water were concentrated from 500 mL to 1 mL using an EZ cartridge RP-1 and analyzed using GC-MS. As shown in Table 3, the EZ cartridge had a good recovery rate. The number of pesticides with a recovery rate of 70% or higher in 107 pesticides was 101 components when the sample was passed at 50 mL/min and 104 components when the sample was passed at 100 mL/min.

Conclusions

Using an EZ cartridge in the sample preparation for pesticide analysis in water, it was possible to reduce the time required for solid phase extraction from 162 min to 80 min. The EZ cartridge RP-1 is packed with reversed-phase polymers and is highly versatile; thus, it is likely to be applied with hydrophobic chemical compounds other than pesticides.

References

- 1. Standard test method in water, Ministry of Health, Labor and Welfare, Japan
- 2. Water Supply Test Method 2011 Edition, Japan Water Works Association

www.glsciences.com

GL Sciences Inc. Mar 29, 2022 Doc No.: GL-SM210001