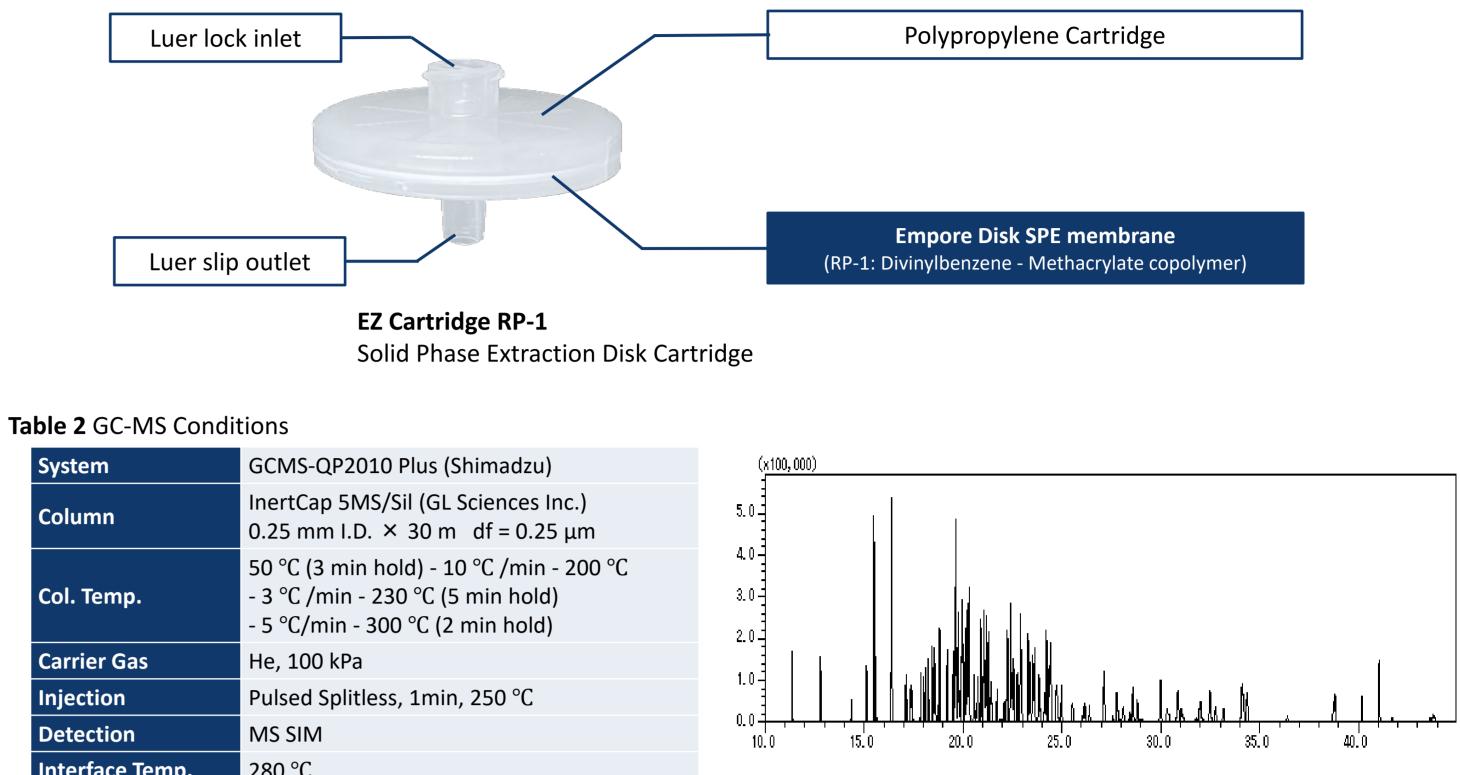


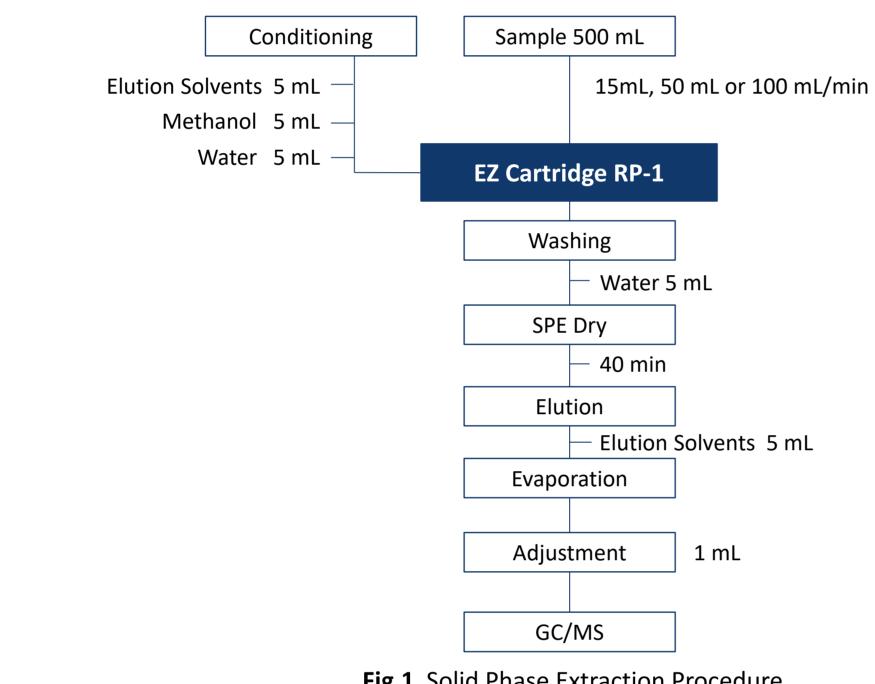
Rapid Solid-Phase Extraction of 136 Pesticides in Water Using Disk Cartridges and **Alternative Solvents for GC-MS Analysis**

Renato Orsino¹, Rina Nagayasu², Reika Takahara², Manabu Takayanagi², Hiroshi Hayashida² ¹Acore Consumíveis, Brazil, ²GL Sciences Inc., Tokyo, Japan


Introduction

Monitoring of pesticide residues in drinking water is essential for public health and regulatory compliance. Gas chromatography-mass spectrometry (GC-MS) is widely used due to its high sensitivity and selectivity. Prior to analysis, solid-phase extraction (SPE) is typically employed to achieve several hundred-fold concentration. Conventional SPE methods require approximately two hours to complete, with most of the time consumed by the sample loading step. In addition, dichloromethane (DCM)—a commonly used elution solvent—raises safety and environmental concerns due to its high toxicity. This study aimed to develop a faster and safer pretreatment method for GC-MS analysis of pesticides in drinking water by:

- Evaluating whether a disk-type SPE cartridge (EZ Cartridge RP-1) can significantly reduce sample loading time
- Establishing DCM-free elution conditions without sacrificing recovery efficiency


Methods

The analytical method used in this study was based on the official Japanese water quality testing procedures,

specifically those described in the guidelines: "Enactment of Ministerial Ordinance on Water Quality Standards, Partial Revision of Water Supply Law Enforcement Regulations, and Guidelines for Water Quality Management"—Annex Methods 5 and 5-2. These are authorized procedures for pesticide monitoring in drinking water in Japan.

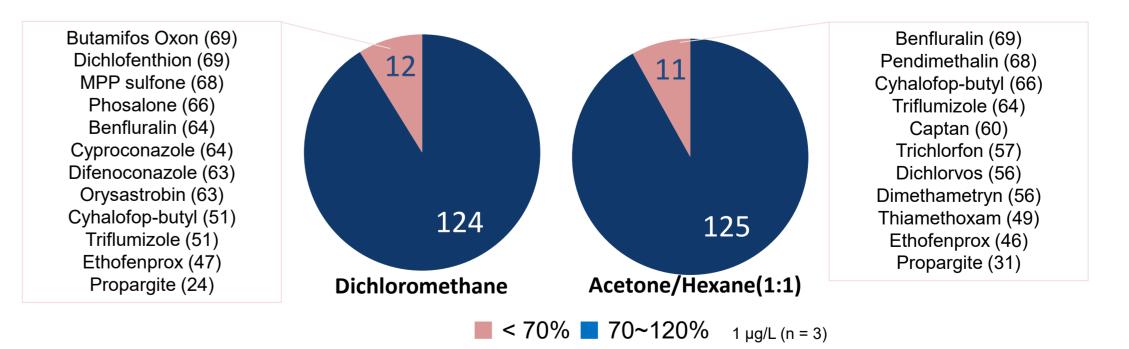
- SPE Cartridge : EZ Cartridge RP-1 (disk-type, GL Sciences Inc.)
- Target Pesticides : 136 compounds
- : Ultrapure and tap water spiked at $1 \mu g/L$ Sample Matrix
- Flow Rates Tested : 15, 50, 100 mL/min
- Elution Solvents:
 - Dichloromethane (DCM)
 - Acetone/Hexane (1:1)
 - Ethyl Acetate

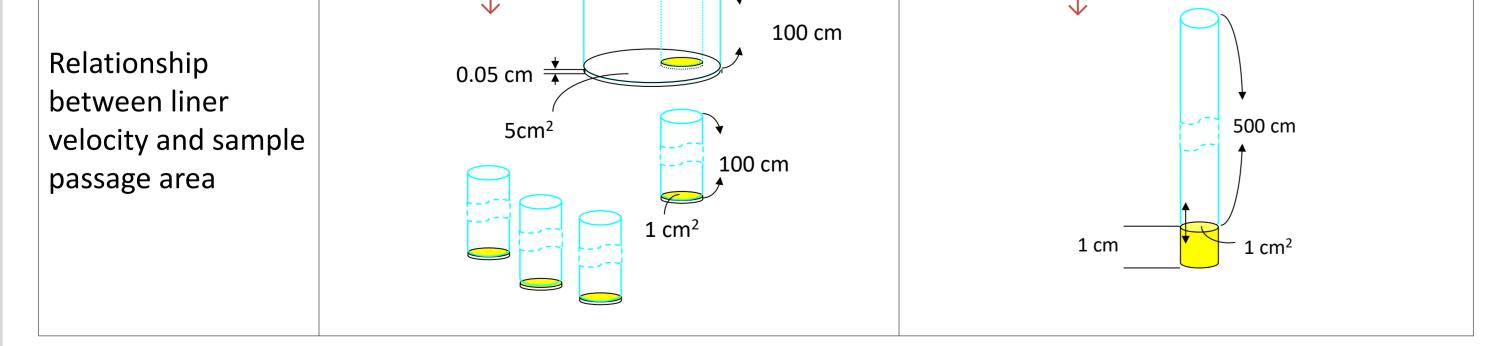
Col. Temp.	50 °C (3 min hold) - 10 °C /min - 200 °C - 3 °C /min - 230 °C (5 min hold) - 5 °C/min - 300 °C (2 min hold)
Carrier Gas	He, 100 kPa
Injection	Pulsed Splitless, 1min, 250 °C
Detection	MS SIM
Interface Temp.	280 °C
Sample Size	1.0 μL

Fig.2 Total Ion Current Chromatogram (500ug/Leach)

Table 3 Repeatability Linearity, and Recovery (Elution solvent; DCM)

	Flow Rate	15 mL/min		50 mL/min		100 mL/min			Flow Rate	15 mL/min		50 mL/min		100 mL/min	
No.	Compounds	Recovery	CV	Recovery	CV	Recovery	CV	No.	Compounds	Recovery	CV	Recovery	CV	Recovery	CV
1	Dichlorvos	Rate (%) 84.4	(%, n = 3) 8.1		(%, n = 3) 2.9	Rate (%) 74.9	<mark>(%, n = 3)</mark> 6.7	71	Phenthoate	Rate (%) 85.8	(%, n = 3) 7.3	Rate (%) 88.1	(%, n = 3) 7.3	Rate (%) 81.5	(%, n = 3 0.
2	Trichlorfon(DEP)	84.4	9.3	82.7	2.1	73	6.7	72	Captan	84.8			3.6	80.9	0.
3	Dichlobenil	81.3	6.8		2.4	73.8	2.6	73	Procymidone	86.4	4.7	92.1	4.3	88.7	1.
4	Etridiazole	82.9	10.2		4.3	71.1	4.9	74	Dimepiperate	84.4	6.2	89.3	6.9	79.6	0.
5	Chloroneb	91.9	5.8		0.9	83.5	0.1	75	Triflumizole	73.3		82.2	9.5	66	1.4
6	Isoprocarb	87.2	5.2	88.9	1.9	83.8	1.8	76	Butamifos Oxon	94.8	11.9	92.6	9.7	75.7	0.
7	Molinate	80.6	5.2		1.2	77.1	3.3	77	Methidathion	87.1	7.8	90.9	5.2	87.6	1.
8	Fenobucarb	86.8	4.9	90.4	3	85	1.4	78	Propaphos	80.7	10.1	62.8	7.2	73.7	0.
9	Propocur(PHC)	83.4	4.6	92.8	4.6	79.4	1.4	79	Tetrachlorvinphos(CVMP)	83.3	8.6	91.9	8.7	81.4	
10	Trifluralin	72.5	4.7	75.8	4.1	58.6	2.5	80	Paclobutrazol	85.9	9.9	91.2	7.6	81.4	0.9
11	Benfluralin	67.1	6.1	70.8	6.3	53.8	3.6	81	Butachlor	79.1	6	87.2	5.9	77.1	1.9
12	Cadusafos	79	6.7	83.6	5.4	75.8	4.3	82	alpha-Endsulfan	82.7	4.5	85.8	5.2	76.9	1.
13	Pecycuron	88.6	9	95.9	5.7	88.2	0.3	83	9-Bromoanthrancene	-		-	-	-	
14	Dimethoate	91.1	8.8		1.7	63.2	2.8	84	Butamifos	89.2		90.1	8	80.6	1.4
15	Simazine	87.6	5.2		5.4	85.3	0.8	85	Napropamide	88.4	6.9	91.7	5.3	89.9	2.3
16	Atrazine	85.9	4.8		5.5	86.5	1.5	86	Flutolanil	89.6		94.5	5.6	91.3	:
17	Diazinon Oxon	92.8	8.2		7.9	83	2.6	87	(E)-Metominostrobin	86.6		94.1	5.4	84.2	1.
18	Cyanophos(CYAP)	80.5	4.2	89.6	5.6	77.9	0.4	88	Pretilachlor	86.8		90.3	5.6	86.3	1.4
19	Propyzamide	89.8	7.1	92.9	7.1	87.7	0.4	89	Isoprothiolane	88.3		91.9	4.5	86.9	2.1
20	Diazinon	81.1	3.6		6.2	81.6	2.8	90	Isoxathion Oxon	86.5		77.7	5.5	85.8	0.
21	Pyroquilon	84.4	3.9	91.7	3.7	81.7	0.4	91	Uniconazole P	84.8		91.7	7.4	80.4	0.
22	Chlrothalonil(TPN)	74.1	4.1	83.4	5.7	78.7	2.8	92	Thifluzamide	82.3	10.8	92.3	6.7	81.7	10
23	Anthracene-d10	-	-	-	-	-	-	93	MPP Oxon Sulfoxide	94.5		150.2	5	84.4	10.
24	Ethylthiometon	80.7	4		3.5	75.9	0.6	94	MPP Oxon Sulfone	91.3	13.8	101.6	6.8	83.4	3.
25	Iprobenfos	87.9	6.8		7.9	79.4	0.6	95	Buprofezin	83.9		88.7	4.8	78.8	0.
26	Tolclofos-methyl Oxon	94.3	8.2	94.4	7.2	84.4	0.4	96	Cyproconazole	83.3	9.2	89.5	7.8	79.9 74.5	1.
27	Benfuresate	83.9	5.8		4.7	82.1	2.1	97	Isoxathion	86.1	7	89.8	4.9		0.
28	Dichlofenthion	76	3.7	83.3	5.6	68.7	0.5	98 99	(Z)-Pyriminobac-methyl MPP sulfoxide	82.2 93.6		92.2 107.8	5.8 3.9	82.5 81.4	2.
9	MEP Oxon Terbucarb	97.8 85.8	10.6		8.2 6.2	82.6 85.9	0.1	100	beta-Endsulfan	85.4	6.2	91.1	4.6	76.5	4
0	Propanil(DCPA)	86.4	6 5.6		3.7	86.3	3.7	100	MPP sulfone	92.4	10.8	91.1	6.8	82.5	4
81 82	Bromobutide	85	6.3	98.4	7.5	84.4	0.8	101	Mepronil	92.4		94.1	3.4	87.8	0
33	Chlorpyrifos-methyl	77.7	4.8	86.8	6.1	75.5	1.4	102	Chlornitrofen(CNP)	90.8		88.9	5.4	72.6	4.
34	Metribuzin	84.1	7.1	94.8	6.6	80.6	0.8	103	Edifenphos	92		92.1	4.8	91	0.
35	Malaoxon	88.2	15.5		8.7	89.3	1.8	104	Propiconazole1	90.8		90.8	6.5	88.4	0.
36	Simeconazole	83.1	7.7	94.4	8.7	80.8	1.2	106	Endsulfate	88.2	6.8	91.3	6.9	77.9	4.
37	Alachlor	85.4	5		5.7	85.3	1.1	107	(E)-Pyriminobac-methyl	83.3	10.2	88.6	6.7	84.5	0.
38	Tolclofos-methyl	82	3.1	87.7	4.7	79.6	1.7	108	Propiconazole2	86.9		90.3	6.8	88.5	0.
39	Simetryne	80.8	7.4		9.4	82.2	0.3	109	EPN Oxon	99.1	11.9	101.7	5.8	85.8	3.
10	Metalaxyl	86.9	7.2	95.5	6.1	85.2	1.7	110	Thenylchlor	92.6		91.7	4.7	90.4	1.
11	Ametryn	79.8	6.9		8.3	81.7	1.7	111	Tebuconazole	85.3	9.4	93.9	6.7	80.9	0
12	Cinmethylin	78.9	3.5		4.1	80.2	0.4	112	Propargite(BPPS)	59.4	9.3	77.7	7.1	41.3	1
3	Prometryn	77.3	6.8		7.4	79.1	0.6	113	Pyributicarb	82.9	10.7	77.8	7.9	60.6	0
14	, Dithiopyr	73.4	4.7	83.6	7.8	67.3	2	114	Pyridaphenthion	87.5	14.5	89.6	8.7	79.3	0
15	MPP Oxon	90.7	8.5	73.6	6.5	80.1	0.7	115	Acetamiprid	84.7	14.4	91.4	11.1	70.6	6
6	Pirimiphos-methyl	76	4.7	86.9	6.8	75.1	0.8	116	Iprodion	86.2	10.1	90.3	5.1	83.5	0
17	Fenitrothion	91.2	8.3	94.4	8.4	83.6	1.9	117	Chrysene-d12	-	-	-	-	-	
18	Bromacil	86.2	11.2	100.5	9.6	81.4	0.6	118	EPN	91.2	9.7	90.2	6.5	75	1.
9	(E)-Dimethylvinphos	84	6.7	98.7	9.9	83.9	1.4	119	Piperophos	82.6		84.6	10.3	72.5	0
0	Esprocarb	82.7	4		4.4	82.1	2	120	Cumyluron	81.5		88.4	7.5	69.3	3
1	Malathon	86.8	6.1	95.2	6.4	87.5	1.6	121	Indanofan	83.1	11.1	54.2	8.4	75	1
2	Chlorpyrifos Oxon	93.1	11.6		10.2	86.7	1.2	122	Anilofos	85.8		88.2	9.3	76.7	0
3	Quinoclamine(ACN)	67.9	5.5		5.5	76.7	2.1	123	Orysastrobin	83.5		89.7	8.4	74.5	1
4	Metolachlor	78.6	4.4	91.9	6.4	81.3	2.1	124	Bifenox	94	16.7	91.1	8.5	68.7	3
5	Chrorpyrifos	77.8	4.1	85.4	6.9	71	2	125	Furametpyr	82.4	11.1	89.6	6.2	81.4	0
6	Thiobencarb	82.6	3.2		4	85	1.8	126	Iprodion-t	93.2		89.6	5.6	74.4	1
7	(Z)-Dimethylvinphos	82.7	8.2		8.3	82.7	1.5	127	Phosalone	80.8		87.5	7.7	74	0
3	Cyanazine	83.2	7.6		6.5	82.3	1.4	128	Pyriproxyfen	77.9		82.9	4.4	64.2	C
9	Fenthion	83.4	3.8		5.3	82.4	2.2	129	Mefenacct	89.3		91.4	6.4	81.9	
0	Chlorthal-dimethyl(TCTP)	79.2	2.8		5.1	77	3.2	130	Cyhalofop-butyl	55.5		70.4	4.4	44.7	0
1	Isofenphos Oxon	95.3	13		10.9	81.5	0.1	131	CNP-amino	92		92.4	2.4	86.5	3
2	Tetraconazole	80.3	9.3		8.7	80.9	1.6	132	Pyraclofos	174.9		83.8	48.1	128.1	
3	Fthalide	86.5	4.6		3	84.9	4.6	133	Etobenzanid	93.5		88.6	5.6	82.3	1
4	Fosthiazate	86.2	9.7		6.9	85.5	0.2	134	Cafenstrole	97.4	12		5.6	91	C
5	Thiamethoxam	70.1	15.2		2.7	39.3	2.5	135	Boscalid	95.6		87.4	3.5	86.7	
6	Pendimethalin	79.6	5.7		7.4	63.5	2	136	Ethofenprox	54.5		49.2	4	35.4	0
57	Cyprodinil	79.8	5.7	87.6	6.2	79.2	0.3	137	Thiacloprid	91.3		97.6	2.1	79.5	
58	Dimethametryn	82.7	8.5		8.3	84.7	0.5	138	Difenoconazole	86		83.7	6	70.8	4
59	Isofenphos	82.9	6.1	87.8	4.8	81.6	1	139	Pyrazoxyfen	91.6	9.9	91.3	4.7	82.3	1


	EZ Cartridge	Conventional SPE Cartridge					
Structure							
Particle size and diffusion efficiency	10 μm *	60 - 70 μm					
Sample Volume	500 mL	500 mL					
Flow Rate	100 mL/min	10 mL/min					
Time	<u>5 min</u>	50 min					


Study 2: Comparison of Elution Solvents

Three elution solvents were evaluated: dichloromethane (DCM), acetone/hexane (1:1), and ethyl acetate. DCM and acetone/hexane yielded comparable recovery results across most compounds, indicating that acetone/hexane is a suitable alternative to DCM. In contrast, ethyl acetate resulted in significant degradation of Ethylthiometon, leading to poor recovery. These findings support the selection of acetone/hexane (1:1) as the preferred DCM-free elution solvent.

Study 3: Validation with Tap Water Samples

Tap water samples spiked with 136 pesticides at 1 µg/L were processed at a flow rate of 100 mL/min and eluted with acetone/hexane (1:1). The results showed that the recovery of 125 compounds was over 70% as in the case of dichloromethane as the eluent. The performance was similar to that observed with ultrapure water, confirming the method's applicability to actual water samples..

Results

Study 1: Effect of Sample Flow Rate on Recovery Rates

Ultrapure water samples were spiked with 136 pesticides at 1 µg/L each, and solid-phase extraction was performed using a disk-type SPE cartridge under three flow rate conditions: 15, 50, and 100 mL/min. The number of compounds recovered with ≥70% efficiency was 131 at 15 mL/min, 132 at 50 mL/min, and 121 at 100 mL/min (Table 3). These results indicate that even at a high flow rate of 100 mL/min, sufficient retention and recovery car be achieved for most compounds, demonstrating that faster flow rates are effective for reducing sample preparation time.

Fig 3. Recovery Rate of the Pesticides from Tap Water Samples by Each Solvent

Conclusions

This study demonstrated that using a disk-type SPE cartridge (EZ Cartridge RP-1) allows sample flow rates to be significantly increased (up to 100 mL/min) while maintaining good recovery rates. Specifically, 125 out of 136 pesticide compounds showed \geq 70% recovery, indicating that pretreatment time can be substantially reduced without sacrificing performance. Additionally, replacing hazardous dichloromethane (DCM) with acetone/hexane (1:1) achieved similar recovery results while improving safety. These results confirm that the developed method is a practical and efficient GC-MS pretreatment technique for pesticide residue analysis in drinking water, offering both speed and safety.

References

- 1. Standard test method in water, Ministry of Health, Labor and Welfare, Japan
- 2. Water Supply Test Method 2011 Edition, Japan Water Works Association

www.glsciences.com GL Sciences Inc. June 3, 2025 Doc No.: SLPS0404E